Data Science N027. randint, arange, sort, Filtrado, where

By rafaelaquino on 1/1/2024

Cordiales saludos

![27_portada.png](Image from post)
Comencemos

En esta tercera entrega del reencuentro con numpy seguiremos viendo la potencialidad y utilidad de tan excelente librería.

Repasaremos como podemos entrar a nuestro cuaderno de trabajo de jupyter Lab. Tengo todo el proceso de creación del entorno virtual y subida a Git Lab en la publicación: Data Science N025. JupyterLab - Git - Gitlab.

Accedo a mi carpeta datascience dentro de mi Pc y activi el entorno viertual. Luego entro a Jupyter Lab donde tendo ya los ejercicios hasta ahora.

![27_entrar.png](Image from post)

Al en entrar a jupyter Lab nos aparecerá una ventana como vemos en la siguiente captuara de pantalla.

![27_1.png](Image from post)

Una forma de crear un nuevo cuaderno es dándole click al cuaderno (Notebook) señalado con Python 3 (ipykernel). Ver círculo amarillo.

![27_2.png](Image from post)

Luego renombramos en cuaderno que nos servirá para realizar los ejercicios de esta publicación. En este caso corresponde el 27_ejercicios.ipynb

![27_3.png](Image from post)
Y listo, ya tenemos nuestro cuaderno para trabajar, importamos la librería de **numpy** con: ```import numpy as np```
![27_4.png](Image from post)

Otras forma de crear nuestros arreglos (Repaso)

Creo conveniente repasar la creación de los arreglos, porque nos estamos poniendo al día después de tanto tiempo. En la publicación número 13 de esta serie ya habíamos hablado de este tema. Te lo muestro con una captura de pantalla.

Números aleatorios

*Capture de Pantalla* ![27_5.png](Image from post) [Fuente](https://peakd.com/hive-154226/@rafaelaquino/data-science-n013-numpy-arreglos-unidimensionales)

Nuevo ejercicios de números aleatorios

A continuación una nuevo ejercicio para reforzar la creación de números enteros aleatorios. Donde usamos aleatorios=np.random.randint(10,20,30). En este caso se generan 30 números aleatorios entre el 10 y el 20.

![27_7.png](Image from post)

Rango de Números

En la misma publicación número 13 también se abordó el tema de generación de un array por medio de un rango. Podemos observar el concepto general en la siguiente captura de pantalla.

*Capture de Pantalla* ![27_6.png](Image from post) [Fuente](https://peakd.com/hive-154226/@rafaelaquino/data-science-n013-numpy-arreglos-unidimensionales)

Nuevo ejercicios de rango de números

Aquí tenemos para ejercitarnos en este tema de rango de números.

![27_8.png](Image from post)

sort - Ordenando Arreglos

Tenemos nueva característica de numpy: Podemos realizar ordenamiento de valores y palabras con np.sort(). En el siguiente ejercicio ordenamos el arreglo que contiene 6 números y también ordenamos alfabéticamente los cinco colores del arreglo.

![27_9.png](Image from post)

Filtrado con índice booleano

Podemos filtrar o extrear valores de un arreglo por medio de la utilización de las palabrar True o False, donde deacuerdo a la posición de estas palabrar booleanas tomaremos del arreglo original todos los valores que correspondan con el subindice que contenga True. Todo lo verdadero es lo que se filtrará.

![27_10.png](Image from post)

De forma resumida

![27_11.png](Image from post)

Filtrado con condicionales

Aquí utilizaremos los operadores relacionales para hacer la condición y de acuerdo a la condición nos arrojará como resultado un nuevo array con los valores booleanos, lógicamente será True si se cumple la condición y False cuando no se cumpla la condición.

![27_12.png](Image from post)
Podemos valernos de nuestro conocimiento en Python si deseamos saber los valores. Esta es una forma, existen otras maneras de hacerlo.
![27_13.png](Image from post)

Filtrado por Rango

También podemos filtrar con con un rango de vlores. En este caso los valores mayores que 3 y menores que 8.

![27_14.png](Image from post)

Where - Búsqueda

Con np.where() podemos buscar determinado valor. Es fácil de comprender con el siguiente ejercicio.

![27_15.png](Image from post)

Hasta aquí nuestros ejercicios de hoy. Te invito a que los practiques y realiza otros nuevos ejercicios con valores diferentes.



Otra forma de entrar a nuestro cuaderno de trabajo

Te muestro otra forma de crear tu cuaderno de trabajo directamente desde la terminal.

![27_entrar_otra_forma.png](Image from post)

Actualizando el repositorio

Este apartado te permite practicar git. Poco a poco de darás cuenta de la utilidad y lo importante para trabajar en este mundo de la programación e informática.

![27_16.png](Image from post)

Aquí nuestro repositorio actualizado con todos los ejercicios tratado en esta publicación.

![27_17.png](Image from post)

Aquí el link del ejercicio 27

Hasta aquí nuestra publicación, nos volveremos a encontrar el próximo miércoles.

Todos a programar! Rafael Aquino Bogotá / Colombia

Comments (1)

stemsocial's avatar @stemsocial 1/4/2024

Thanks for your contribution to the STEMsocial community. Feel free to join us on discord to get to know the rest of us!

Please consider delegating to the @stemsocial account (85% of the curation rewards are returned).

You may also include @stemsocial as a beneficiary of the rewards of this post to get a stronger support.